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BACKSCATTERING AND NONPARAXIALITY ARREST COLLAPSE OF DAMPED

NONLINEAR WAVES*

G, FIBICtI tl, B, ILAN f§, AND S. "I'SYNK()V t¶

Abstract. The critical nonlinear SchrSdinger equation (NLS) models the propagation of intense laser

light ill Kerr media. This equation is derived from tile more conq)reheasive nonlinear Hehnholtz e(tuation

(NLH) t)y employing the paraxial at)t)roximation and negle(:ting th(' backscattered waves. It is known that

if the input power of tile laser beam (i.e., L2 norm of the ilfitial soh,ti(m) is sufficiently high, then the

NLS inodcl predicts that the beanl will self-fo(:us to a l)oint (i.e., collal):m) at a finite propagation distance.

Matheulati(:ally, this behavior corresponds to the formation of a singularity in the solution of the NLS. A key

question which has been open for many years is whelher the solution to t im NLH, i.e., tile "parent" equation.

may nonetheless exist and remain regular everywhere, in particular for those initial conditions (input powers)

that lead to blowup in the NLS. In the current study we a(hh'ess this (tue_tion by introducing linear daml)ing

into t)oth models and sul)sequently (:omparing the mnnerical solutions of the damped NLH (t)oundary-value

problem) with tile corresponding solutions of the (lan_l)ed NLS (initii,l-value t)roblem). Linear daml)ing

is introduced in much the same way as done when analyzing the clas:dcal constant-coefficient Hehnholtz

equation using tile limiting absorption principle. Numerically, we have f(,und that it provides a very effi('i(,nl

tool for controlling tile solutions of both the NLH an(t NLS. In t)artic flar, we have been able to identify

initial conditions for which the NLS solution does beeonle singular, whereas the NLH solution still remains

regular everywhere. _\> believe that our finding of a larger domain of ( xistence for the NLH than that for

tile NLS is accounted for by precisely those mechanisms that have bee_L neglected when deriving the NLS

from the NLH, i.e., nonparaxiality and backscattering.

Key words. Kerr medium, nonlinear wave propagation, self-focusing, singularity formation, linear

damping, limiting absorption, two-way ABCs

Subject classification. Applied and Numerical Mathematics

1. Introduction. The focusing critical nonlinear Schr6dinger equvtion (NLS)

iv': (z, x) + 5±_, + 1_i,14/_.i, = 0, V,(0, x) :: _/0(x), (1.1)

where x 6 ll_̀ t and A± = O_x, + "." + Oza_ra, arises in a variety of physical contexts. Of foremost interest is

the (:as(, d = 2, which corresponds to the propagation of intense laser be;,ms in Kerr media. In this ease, z is

the axial coordinate in the direction of propagatiom x = (x,y) are the spatial coordinates in the transverse

plane, L± = 0_ + Oyy is tile diffraction term (transverse Laplaeian), and iv,m2_, describes the nonlinear

polarization of the Kerr medium. It is well known that solutions to tile critical NLS (1.1) can self-focus

and eventually collapse, i.e., become singular, at a finite propagation (tistanee, provided that their initial
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power N(O) = f ]_/,'012dx exceeds a threshold power N,:, whose value depends only on the dinmnsion d [7, 28].

Since, however, physical quantities do not become infinite, and since in experiments laser Imams continue to

propagate beyond the NLS blowup point, the question arises as to what specific physical mechanism(s) among

those that have been neglected when deriving tile NLS from the Maxwell's equations, actually arrest(s) the

collapse. We recall that the final stage in tile derivation of the NLS is to disregard the backscattering and

apply the paraxial a.pproxinmtion (see Section 2.2) to the critical nonlinear Hehnhohz equation (NLH)

AE(z,x)+kX(l+elEl4/d)E=O, A----0::+A±, (1.2)

where k0 is the linear wavenumber and the extent of nonlinearity is measured by the quantity e = 4e0cn._,

where T_2 is the Kerr coefficient, see, e.g., [3, 19]. Therefore, it is natural to ask whether going back from

the NLS to the NLH, i.e., adding nonparaxiality and backscattering, is sufficient to guarantee existence of

the solution with no singularities. In other words, fi)r a given initial condition that leads to blowup in the

critical NLS, does the NLH (always) have a solution that remains regular everywhere?

The foregoing question has been open for many years. In his celebrated 1965 paper in Physical Review

Letters [15], which was the first publication in the literature to predict that the solutions to the critical

NLS can become singular, Kelley was careflfl to note that the paraxial approximation, and hence tile

entire NLS model, breaks down near the singularity. Felt and Fleck [4] were the first to demonstrate

that nonparaxiality of the beam can arrest the blowup, by showing nmnerically that the initial conditions

that lead to singularity formation in the NLS, result in focusing-defocusing oscillations in the NLH. In these

simulations, however, they did not solve a true boundary-value problem for the NLH. Instead, they solved an

initial-value problem for a "modified" NLH that only describes the right-propagating wave (while introducing

several additional assumptions along the way). Akhnmdiev and collaborators [1,2] analyzed an initial-value

problem for a different "nmdified" NLH; their numerical simulations also suggested that nonparaxiatity

arrests the singularity formation. Both numerical approaches [4] and [1,2], however, did not account for the

effect of backscattering. Fibich [5] applied asymptotic analysis to derive an ODE in z for self-focusing in

the presence of small nonparaxiality. His analysis suggests that nonparaxiality indeed arrests the singularity

formation, resulting instead in decaying focusing-defocusing oscillations. However, backscattering effects

were neglected in this asymptotic analysis.

The aforementioned studies [1, 2, 4, 5, 15] haw_ prompted a general belief that nonparaxiality arrests the

collapse. However, no rigorous proof of global existence for the NLH has ever been provided. Moreover_ all the

simulations in the above studies neglected the backscattering and considered only the forward-propagating

field. The first numerical solutions of the NLH as a true boundary value problem, with backscattering

effects fully included, have been obtained by Fibich and Tsynkov in [12], using a high-order discretization

supplemented by a new two-way artificial boundary condition (ABC). The simulations in [12] were performed

for the values of tile input power of up to 9()oK of the threshold N_., and they have captured the mild self-

focusing of the corresponding solutions. In a subsequent, paper [10], we have corroborated experimentally

the prediction of the asymptotic analysis that tile magnitude of the backscattered signal scales quadratically

with the nonparaxiality parameter f (see Section 2.2), and that the computed NLH solutions converge to

the corresponding NLS solutions as f goes to zero.

The mmlerical methodology of [12] was obviously not free of limitations of its own. Foremost, we could

not obtain converging solutions for initial powers equal to or higher than the critical value N_.. In [12], we

have considered initial powers of only up to 90% of/\_; in the current paper we comtmted the NLH solutions

for up to N(0) = 0.99N_ (see Section 4). In the course of these simulations we have noticed that as N(0)



approaches tile critical power from below, the convergence rate of the ite_'ations slows down noticeably. This

makes tile simulations for higher subcritieal values of N(()) (0.99N,. < N{0) < N(.) difficult to conduct,

although it is reasonable to assume that the NLH solution will converg(, for intmt powers all the way up to

N_. However, for the input power N(0) exactly equal to A'(. the convergence of nonlinear iterations of [12] is

lost (see Section 4).

The aforementioned slowdown of convergence for input powers slightly below N_ should be attributed

to either deficiencies of the method, or to insufficient computational resources, or to both. As concerns

the iteration method of [12] itself, it is tile most straightforward approach based on simply freezing the

nonlinearity; most likely, it can be improved or replaced by a more advanced technique, and we plan on

looking into this issue in the future. As for tile comtmter resources requirenmnts, they are determined by the

size of the computational domain, which should be suflq<:iently largv so that to meet the condition of near-

linear propagation in the far field, see [12]; and by the grid size, which sh,mld be sufficiently fine to resolve a

given wave length and the sharp near-blowup profile. These requiremenls become more stringent for higher

input powers, which decay at larger distances an<t/or un<lergo stronger f>cusing. In other words, the higlmr

the input power the larger the domain and/or the finer tile grid that <me t ee<is to use in order to maintain the

same sohltion quality and/or convergence rate. In our previous simulati, ms we have, indeed, seen examples

of diverging NLH solutions with subcritical input powers which converged on a larger COmlmtational domain

and/or at a finer resolution. It is still unclear, however, whether having more computer resources and/or a

better nonlinear iteration scheme will allow one to solve the NLH for initial conditions that lead to collat)se

in the NLS, or whether the convergence breakdown at N(0) > .\'c is an indication of the loss of solvability

of the NLH, or loss of regularity of tile solution.

As such, in the current paper we explore an alternative approach _o the issue of solving the NLH in

the blowup regime of the NLS, by (:onsidering the linearly damped NLH and the correst)onding linearly

damped NLS. The addition of linear damping is not an ad hoe procedur,'. Indeed, an electromagnetic wave

is always partially absorbed by the medimn through whictl it propagate,s, an effect neglected in either the

original undamped NLH or NLS, both of which inodel the propagation under "ideal transparency." A

mathematical motivation to add linear damping comes from the so-called limiting absorption principle that

is used for identi_'ing tile unique solutions of the linear Hehnholtz equation, see, e.g., [27]. It is known that

the classical constant-coefficient homogeneous Helmholtz equation

AE + k'_E = 0 (l.3a)

has non-trivial solutions on the entire space even in the class of functions that vanish at infinity, which

obviously amounts to non-uniqueness. To fix the problem, tile addilional Sonunerfeld boundary conditions

need to be introduced at infinity that basically distinguish between the incoming and outgoing waves. On

the other hand, when a complex absorption coefficient is added, the ne_ damped equation

AE + ko(1 + i_)E = 0 (1.3b)

has only trivial solution. Consequently, its inhomogeneous counterpar: will be uniquely solvable fllr any

compactly-supported right-hand side in rather wide classes of functions, such as tempered distributions.

see [27]. Moreover, when _ ---+ +0, tile unique solution of tile inhomogen,_ous damped equation will conveT:qc

uniformly on the entire space to the solution of the respective undamped equation that corresponds to eitlmr

the radiation of waves toward infinity (outgoing waves), or conversely, lhe incidence of waves from infinity

(incoming waves), where the distinction is rendered by the sign of d. This, in particular, implies that if



wedecideto keepa smallbut finitedampingin theequation,wemayexpectits solutionto beuniformly
(:loseto thesolutionof thetmdanlpedequationthatisdrivenbythesamesourcetermsandiscomposedof
eitheronlyoutgoingoronlyincomingwavesin thefarfield.Thelatterconsiderationisespeciallyimportant
in thecontextof our iterationalgorithm,seeSection3 and[12]for detail whichbasicallyreducesto a
repeatedsolutionof theconstant-coefficientHehnholtzequationdrivenby,avarietyofcompactlysupported
right-handsidesandsubjectto theradiationboundaryconditionsin thefar field.

SolvingthedampedNLHnumericallyasatrueboundaryvalueproblemrequiredonlyminorchanges
in thealgorithmof [12]fortheumtampedNLH,whicharedescribedin Section3. At thesametime, the

addition o/ damping allows us to better" control the solution. In particular, damping decreases the solution

magnitude in the far field, which is a key." requirement for the validity of the artificial boundary conditions

(ABCs) of [12]. As a result, we have been able to con.sider initial conditions with the powers well above N_.

Let us recall that for a given initial condition that leads to the blowup in the undamped critical NLS.

there is a threshold value cfs_ of the damping parameter 5 such that if 5 > _sh then linear damping arrests

the collapse, whereas when 5 < 5Sh the solution of the NLS blows up, see [6]. 1 In the numerical simulations

of the damped NLH reported hereafter we found a similar threshold value 5H such thai for cf > ?iHththe

solution exists and is regular everywhere, whereas when _i < 5t!_ the iteration scheme diverges. As has t)een

mentione(t, in the latter ease it is not (:lear whether the (tivergenee indicates that there is no solution to

the NLH, or that our computational resources are insuffi(:ient (or the iteration scheme is suboptinml) to

calculate the solution. Therefore, we (:an conclude that the actual (analytical) threshold vahm _H, such thai

:H is less or equal than the computed threshold (itS,, which isregular solutions to the NLH exist for all ($ > Oth ,

determined from the simulations, i.e., that 0 _< _I, -< 5:I_.

The main result of the current study is that

-It
(),h < ($_h"

In other words, for a given initial condition that leads to the I)lowup in the. undamped NLS, there is an entire

range of values for the damping coefficient: 5_, < (1 < ash, for which the damped NLS solution will blow

up, but the NLH solution will be regular everywhere. Therefore, we can conclude that nonparaxiality and

backscattering arrest the collapse when the damping t)arameter is in the range c$_ < _ < as,. Whether NLH

solutions exist for infinitely small linear damping as well, i.e., in the limit 6 --+ 0, is the question that yet

remains to be answered. We believe, however, that this question should be considerably easier to address,

both numerically and analytically than the question of solvahility of the original undamped NLH.

2. Formulation of the Problem.

2.1. The Nonlinear Helmholtz Equation. A tyl)ical setup for the propagation of electromagnetic

waves in a Kerr medium is shown in Figure 2.1. An incoming laser beam with known characteristics impinges

normally on the planar interface z = 0 between the linear and the nonlinear medium. The electric field E =

E(z, x) is governed by' the nonlinear Helmholtz equation (1.2). For simplicity, we consider the cylindrically-

symmetric case 2 where E = E(z, r) and r = V/X_ +... + x_. The nonlinear medium occupies the semi-space

z _> 0 (see Figure 2.1). Consequently,, the NLH (1.2) has to be supplemented by boundary conditions at z = 0

lSelf-focusing in the critical NLS is highly sensitive to the effect of small perturbations. Some perturbations can arrest the

collapse even if they are initially infinitesimally small [11]. In contrast, art infinitesimally small linear damping does not arrest

the collapse, and its sufficient amount must be present to regularize the solution.

2This assumption is quite reasonable, since even when the initial conditions of the NLS are not cylindrically-symmetric,

near the singularity the solution becomes cylindrically-symmetric [8].
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and z ----+ +oc. We require that as z ---+ +oc, E have no left-traveling components and that the propagation

be diffraction-dominated with the field amplitude decaying to zero, i.e., ?ira max lE(z, r)l = 0, which also
: --_c 0_<r<vc

means that the nonlinear wavenurnber k _ = klj (1 + dEI 4/a) approache._ its linear limit: lira k 2 = k_. In
:-++_c

other words, at large z's the solution should be a linear superposition of right-traveling waves. Since the

actual numerical simulation is carried out on a truncated domain II < z _< z ..... (Figure 2.1), the desired

behavior of the solution as z -----+ +oc has to be captured by a far-field artificial boundary condition (ABC)

at the artificial boundary z = Zma×. This boundary condition shouht guarantee a reflectionless propagation

of all the waves traveling towards z = +vc. Often, boundary conditions designed to ensure the transparency

of the outer boundary to the outgoing waves are called radiation boundory conditions [24].

The situation is more complex at the interface z = 0, where the lotal field E(0, r) is composed of a given

incoming (right-traveling) component Einc(0, r) and an unknown backs, "at tered (left-traveling) component

E_,_l (0, r), i.e.,

E(O, r) = E_._(O,r) + E_(O, ,').

As such, the boundary condition at z = 0 has to guarantee the refl,,ctionless propagation of an3' left-

traveling wa_,e through the interface and at the same tixne be able to correctly prescribe the incoming signal.

hnplementation of such a two-way ABC was first carried out in [12] for the undamped NLS, and is extended

to the damped case in Section 3.3.

Finally, the electric field vanishes as r ---+ +ac. In practice, we trm,cate the domain at some large but

finite rma× and require that E(z, r,,ax) = 0.

2.2. Paraxial Approximation and the Nonlinear Schr/Sdinger Equation. We first introduce the

(timensionless quantities _, _, and _', as

= --,r £ _ z , E = eit'°"(_-21"2_-o-0J d/_t.,(z, r), (2.1)
ro 2 L/_ F



where r0 is Ihe transverse width of the input beam and LD_" = kor_ is the diffraction length. Then, by

substituting the, quantities (2.1) into the NLH (1.2) and dropping the tildes, we obtain

iwz + A±_', + 1_,t4/dg , = -4f2_;zz, (2.2)

where f = 1/r0k0 = A/27rro is the nonparaxiality parameter.

The standard derivation of the NLS is motivated by the observation that f << 1, since typically A << r0.

This suggests that one can neglect the _,"z_ term, i.e., apply the paraxial app_vximation, and obtain the

nonlinear SchrSdinger equation

iw:(z,r) + _± t', + [t614/dg ' = 0, (2.3)

which is the same as the previously introduced equation (1.1), except that in (2.3) we use r instead of x for

simplicity. The NLS (2.3) is supplemented by the initial condition at z = 0:

"_,(0, r) = (egki_)_/" E,,,_(O, r).

Subsequently, it needs to be integrated by a "time"-marching algorithm, where tim <tirection of propagation z

plays tim role of time. We reemphasize that backscattering effects are not taken into account by the NLS (2.3).

Indeed, once (2.3) is solved, the overall solution, according to (2.1), is the slowly varying amplitude W times

the forward propagating oscillatory component e ik_:.

2.3. Linear Damping. When damping, i.e., linear absorption, is included, the NLH (1.2) becomes

k_ (1 + ,:,_+ etEI4/d) E = 0, (2.4)AE(z,x) +

where k0 is the (real part of the) wavenumber,

= '_(_)
_(n_,)'

and no is the linear index of refraction of the medium. The corresponding NLS (2.3) becomes (see eq. (2.1))

iV',_ + a±_', + l'_!,14/d_!.,+ ir_k_, = 0. (2.5)

By definition, optical transparency of the medium means that the damping is small. For example, for water

in the visible regime [14],

'_(n2°) ~ 10-L
_(n_,)

Having small physical values of damping also agrees well with the mathematical reasoning behind the limiting

absorption principle. As indicated in Section 1 (see, e.g., [27] for detail), for a classical constant-coefficient

Helmholtz operator of (1.3a), the introduction of a small complex absorption coefficient of the appropriate

sign [as in (1.3b)] implies that there will be a unique solution for any conq)aetly supported excitation, and

that this solution will t)e Ulfiformly close in the entire space _d+t to the solution of the corresponding

undamped linear Helmholtz equation driven by the same sources and subject to the radiation boundary

conditions in the fat" field. In the following Section 3, we show that for the fornmlation analyzed in this

t)at)er the proper sign of 6 is positive.

As we hax'e noted before, the physical case that corresponds to the propagation of laser beams in bulk

Kerr media is d = 2. However, in order to reduce the complexity of the computations we rather consider a



simplercased = 1, as was previously done in [12]. Thus, the damped NI,H for E = E(z, r) and the damped

NLS for _' = _'(z, r) that are solved numerically in this study are

and

E::(z,r) + E,,,. + k_(1 + i_ + eIE[_)E =- O, (2.6)

• 2 ')- ,
iv,z(z, r) + t:'r,. + _rokSOw + l_"_14w= 0. (2.7)

respectively.

3. Numerical Methods. The daml)ed NLH (2.6) is solved using fourth-order finite differences. The

methodology of solution is outlined below in Section 3.1; it is sinfilar to the one that we have introduced in

our previous work [12] fi)r sCving the undamped NLH. The thole(' of ;, higher-(/rder method is motivated

primarily by the necessity to resolve a small-scale phenomenon of back_cattering at the background of the

forward propagating waves. The damped NLS (2.7) is also solved t)5" a f¢)urth-order scheme; it is natural to

expect that this will leave less room for potential purely numerical discr('pan('ies 1)etween the two techniques

and as such, will allow for a more a(',curate comparison. Besides, it is generally known that higher-order

methods provide for a better resolution of waves.

3.1. Discretization of the NLH and Solution Methodology. We use a conventional fourth-order

central-difference discretization for the Laplacian A = 0:: + 0_ of (2.6) in so doing tile stencil is five-node

wide i_l each (:()ordinate direction. As the equation is nonlinear, w(, implement a nested iteration s('heIne.

On the outer loop, we freeze the nonlinearity, i.e., consider the (:,)efficient k'-' - kl] (1 + i6 + e]EI 4) as a

given fimction of the coordinates z and r, which is actually obtain(,d bx taking the quantity IEI 4 fronl tile

previous iteration, see (2.6). This way we arrive at a linear equation wit)t variable coefficients. The latter is

also solved by iterations on the inner loop of the nested scheme. Hore, we leave the entire varying part of

tile equation, which is proportional to e, on the lower level, and on the upper level need to invert only the

constant-coeJficient linear damped Helmholtz operator A + k_(1 + i6 II (('f. equation (1.3b)).

Forlnally_ our iteration scheme resembles the fixed-point appr()a(:h, however, no rigorous (:onv(,rg(,nce

theory is available yet, and the convergence is assessed experinlentally. The advantage of using these nested

iterations is that first, the method eventually reduces to the repea)e(t solution of one and the same linear

constant coefficient equation driven by different source terms, which can be done efficiently at the discrete

level. Second, the radiation boundary conditions at z = Zmax and the two-way ABCs at z = 0, see Figure 2.1,

are most convenient to set on the upper tittle level of the iteration scheme alrea(ty for the linear constant-

coefficient operator.

To solve the linear constant-coefficient damped discrete Helmholtz equation

A(h)E + k2(1 + i6)E = 9, (3.1)

where 9 is the right-hand side generated on the previous iterati()n, we first separate the variables by

implementing the discrete Fourier transform in the transverse dirocti(,n r; the boundary conditions are

symmetry at r = 0 and zero Dirichlet at r = rm,x (see Section 2.1). Thi_ yields a collection of fourth-order

one-dimensional finite-difference equations (grid index n correst)onds 1o the continuous variable z):

-L',,_,_, + 16E,, I - 30/_,, + 16/_.+1 - E.+2
+ (k2(1 + i6) - A,,,)/_,, = .0, (3.2)

12h 



parameterized by tile dual Fourier variable A,,,, the latter is defined by fornmla (29) of [12]. Each equation

(3.2) needs to be solved independently. 3 Tile two-way and radiation ABCs at z = 0 and z = Z,,ax,

respectively, fi)r the discrete equation (3.1) are set in the Fourier space, i.e., individually for each one-

dimensional equation (3.2). This is done by first identifying the linearly-independent eigen-modes for the

homogeneous version of this equation. It is imp()rtant to note that even though the original differential

equation is of the second order, we are using its fourth-order approximation and as such, each t'lomogeneous

discrete one-dimensional equation of type (3.2) has four linearly independent solutions. These sohltions are

qI', q_-", q_], and q_-", see [12], where ql, 1/q_, q.,, and 1/q.,_ are roots of the characteristic algebraic equation

2 ')-1 + 16q+ (12h:(k_(1 + i#) - A,,,) - 30)q _ + 16q 3 - q4 = 0. (3.3)

3.2. Roots of the eharaeterlstie Equation. It is indeed easy to see that equation (3.3) has two

pairs of mutually inverse roots. We first notice that this equation originates from a central-difference i.e.,

symmetric, discretization (3.2). As such, if q is a root, then q-1 is obviously a root as well, which can be

verified by direct substitution. Then, to actually find the roots we rewrite the polynomial on the left-hand

side of (3.3) as

(q -- ql )(q -- q_l )(q _ q'2)(q -- q;_)

--_ 1 + (dl + d2)q - (2 4- dld2)q 2 + (dl + d'2)q 3 - q4

where

dl =ql+ql 1, d2 =q2+q21,

and match the coefficients. In so doing, we obtain

2 ')
dl + d2 = 16, -2 - did.2 = 12h:(k6(1 + i6) - A,,) - 30

so that each pair of roots: ql, q_-l and q2, q21

(3.4)

, can be found by solving the corresponding quadratic equation:

q2 _ dlq + 1 = 0 (3.5a)

or

q2 _ d2q + 1 = 0, (3.5b)

while the coefficients da and d2 are, in turn, determined by solving quadratic equations (3.4).

At this stage, the key difference between the current analysis for the damped equation and the previous

analysis for the undamped equation of [12] needs to be emphasized. As shown in [12], when 6 = 0 the first

pair of solutions of the homogeneous equation (3.2), qi' and q_-", approximates the genuine "longitudinal,"

i.e., z-aligned, modes of the undamped homogeneous differential equation (1.3a):

E'I = e _k_, and /)e = e -ik¢: (3.6)

respectively. The functions /_l =/_1 (z) and/_2 =/_2(z) are two linearly-independent solutions of the ODE

+ - A)E= o (3.7)

aNote, the discrete equations (3.l) and (3.2) are very similar to the corresponding discrete equations studied in [12] except

that previously we had no damping.



obtained t)3" Fourier transfornfing equation (1.3a) with respect to r; A is the dual variable. In fl)rmulae

(3.6), we have denoted kc = x/_ - A and a particular branch of the square root that we always take is

= pt/2eiO/2. The two continuous modes (3.6) may be either traveling or evanescent waves depending

on whether the real quantity k_ = (k 0 -A) is positive or negative, or in el her words, whether the dual Fourier

variable A is less or greater than k_{. To demonstrate the afl)rementioled approximatioIl property for the

undamped (6 = 0) discretization (3.2), we re-define k,. = _- A.... i,,roduce a= h{k_, and show in [12]

that if c_ > 0 then ql and q_l are complex conjugate roots of the chara,:teristic equation (3.3). Both these

roots have unit magnitude: Iql[ = Iq,-ll = 1, which indicates that q[' and q_r, are pure discrete traveling

waves. Moreover. if (l << 1 then (see [12])

= _) 5 = (-ik,,h:ql e ik_h: + C ((kflt:) ), q;l + (l((k,,h:)a). (3.8)

Equalities (3.8) imply that in the undamped ease 5 = 0, q_' is a discrete counterpart of the right-traveling

wave /)1, and qT" is a discrete counterpart of tile left-traveling wave _>.,'_,the aptm)ximation is obviously

fourth-order accurate because on the grid z,, = h.:u. If t_ < 0 and still a := 0, then we again show in [12] that

Iq,[ < 1 and }q_[ > 1, which indicates that q_' is a right-evanescent way,' and q_-" is a left-evanescent wave.

The situation changes drastically with the introduction of damping, hi contradistinction to the

undamped ease, when d ¢ 0 the homogeneous differential equation m, longer has pure I)ropagating, i.e.,

eonstant-amtflitude , longitudinal modes. Indeed by Fourier transformin/equation (1.31)) in the r direction,

we arrive at the family of ()DEs

E:: + (ko(1 + i6) - A)E = 0 (3.9)

paraineterized by the dual variable A. Each of the equations (3.9) has two linearly independent solutions:

o (3.10)

= =

Clearly, the second equality in each formula (3.10) is valid only if k_ ¢ 0 Fornmlae (3.1(/) show that as long

as 3 ¢ 0 there will always be a nontrivial real part in each exponent. (:onsequently, the amplitudes of the

waves (3.10) will always decrease or increase exponentially for z ---+ +x;. In particular, if we analyze tile

traveling waves regime of the undamped equation, i.e., the case of sm_J1 A: ko - A > (I. and additionally

assume that I_[ << 1, then formulae (3.10) yield (cf. formulae (3.6)):

_i/'(d_"'Pm) _ tit>-- _+i½ _ = e'k_-'-½ _ e" = E_^lunda'nped) . C--7 _,.'k26z .

(3.11)

E_d_,,,p,d ) -i*'..: 1+_½_ ) e_ik_:+_

/-I,nd_mp_,d) = e i_',.--of (3.6)Since we identify _li'/u"damp_d) = elks: of (3.6) as the right-traveling wav_,, and _2

as the left traveling wave, we can conclude that to have the propagation toward infinity (i.e., the radiation

of waves) accompanied by the decay of the amplitude (as opposed to growth with no bound), we have to

take positive values of the damping factor: fi > 0 (of. Section 1). In this case, the amplitude of _lpldamp_d/

F(d_'"P_'d! will deeavwill decay exponentially for z ---+ +ac (propagation to the right), and the amplitude of _2

exponentially for z ---+ -_c (propagation to the left). As one can easily _ee from (3.11), the rate of decay is

controlled by the value of _.



In connectionto tile aforementionedexponentialbehaviorof the longitudinalmodes,a moregeneral

fact is also worth mentioning. The full Fourier symbol of the undamped operator of (1.3a) obviously has

real roots on the dual plane, these roots occupy the entire circle of radius k0 centered at the origin. In

contradistinction to that, the symbol of tile damped operator of (1.3b) does not have real roots on the dual

plane. As shown in [20], the damped operator will therefore have an ext)onentially decaying fundamental

solution. In practical terms it means that the outgoing waves governed t)y the damped Helmholtz equation

will decay exponentially toward infinity in all directions. For comparison we remind that tile fundamental

solution of the undamped operator is given by a zero order Hankel function, which only decays at infinity

as the inverse square root of the distance from the origin.

To est.ablish the properties of the propagating modes for the discretizat.ion (3.2) in the presence of

damtfing, and to demonstrate similarities to the continuous damped case, we first introduce and prove

PP_OPOSrHO_ 3.1. The characteristic equation (3..7) for 5 ¢ 0 does not have roots with unit magnitude.

Proof. Let us assume the opposite: There exists a unit magnitude root q = e i° to the algebraic

characteristic equation (3.3). Then,

- 1 + 16e i° + (12h2(k02(1 + id) - Am) - 30)e 2i° + 16c 3i° - c 4i0

= [-e -'zi° + 16e -i° + (12h,2(ko(1 + i5) - A,,) - 30) + 16e i° - e 2i°] • e '_i°

= [-2 cos(20) + 32 cosO + (12h_(k02(1+ i6) - ,_,,,) - 3O)]-e "_°= 0.

As e 2i0 ¢ 0, the expression in rectangular brackets has to be equal to zero. Since the only imaginary

contribution to this expression is proportional to 5, we conclude that it is only possible when (f = 0. 13

Proposition 3.1 implies that similarly to the continuous case, there will be no constant-amplitude

solutions to the homogeneous counterpart of the discrete equation (3.2). Each of the four corresponding

modes: q]_, q/-'_, q._', and q_-'_, will exponentially decrease in one direction and exponentially increase in

the opposite direction. In particular, if we assume as before that a << 1 in the undamped traveling waves

regime, 4 and in addition let 6 << 1, then solving first, equations (3.4) for dl, then equation (3.5a) for ql and

q_ i and finally using the Taylor expansion, we obtain (ef. formula (3.8))

ql = eik¢h:-½_:_tth" + 0 kchz 1 + i---(_
2 k_

(3.12)

ql 1

Equalities (3.12) mean that the damped discrete traveling waves q]' and q_-_ approxinmte the damped

continuous waves (3.11) with the fourth order of accuracy. This result is obviously similar to tile one

obtained in the undamped case, see formulae (3.8).

As of yet, our discussion has focused on the first pair of roots qa and q_l of the characteristic equation

(3.3), because these roots correspond to the genuine modes of the original differential equation. The second

pair of roots q2 and q_-i is obtained by solving equations (3.4) for d_, and subsequently soh, ing equation

(3.5b). The corresponding pair of solutions q._' and q2 n is, of course, a pure numerical artifact. In [12] we

have shown that for (f = 0 the roots q_ and q_-_ cannot have unit magnitude: ]q2l < 1 and Iq,7 _ ] > 1, which

means that the waves q_' and q2 n are always evanescent. In the damped case, Proposition 3.1 implies that

4This would also imply _h. << 1 because A,, is small and k_ _ k0.
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these waves will remain evanescent as well. The presence of tile second pair of waves, however, implies that

the discrete equation requires two more |)oundary conditions conlpared lo tile original differential equation.

In Section l, we have outlined a general two-fold motivation behin,[ the introduction of damtling into

the Hehnholtz equation. One part was coming fronl physics because a|lsorption by the medium always

accompanies the propagation of electromagnetic waves ill real-life settings. Moreover, from the standpoint

of mathematics tile introduction of damping helps select a unique solution using the limiting absorption

principle. Besides these two key reasons, the presence of damping in the equation also affects positively the

properties of the nmnerical algorithm.

First, having no roots of unit magnitude presents a significant advantage from the viewpoint of numerical

stability. In this case, every discrete system (3.2) supplemented by the boundary conditions that are discussed

below in Section 3.3, will be well-posed in the classical sense of [13.21]. In contradistinction to that, ill the

original undamped case existence of the roots with unit magnitude may, generally speaking, cause a weak

polynomial growth of the error when tile grid size is refined, although n_ major exponential instability will

be llossiblc.

Second, we remind that the original formulation of the problem requi es that E(z, r) vanish as Irl _ _c.

Instead, when solving the problem numerically we set E(z, r) = 0 at alm ge but still finite distance r = r ..... .

Of course, we expect that on some fixed bounded region of interest located next to the axis of the propagating

beam our solntion will converge to the original infinite-domain solulion with tile increase of r,,ax. A general

methodology for solving infinite-domain problems based on a similar i&_a was first introduced and studied

ill [22, 23,25,26] ill the context of fluid flow. It was shown, in particular, t!lat one may obtain the convergence

rate inversely proportional to the square of the domain size (i.e., ,-- 1/r_,ax using our particular notations).

Besides, for a specific example that involves the Laplace equation that transforms into a Yukawa equatioll

by introducing small "dissipation," Mishkov and Ryal)en'kii }lave shown in [18] that one may expect a inuch

faster convergence of the damped solution to the undaml)ed one on a fixed-size domain rather than on the

original unbounded domain. Even though the formulation of the problen, in [18] is not quite the same as the

one analyzed here, there are still similarities that allow us to consider the results of [18] as another argument

toward using the damped equation.

3.3. Boundary Conditions. Apart from the foregoing key differerlce in the properties of tile roots of

equation (3.3) in the undamped and damped case, see Section 3.2, the alg )rithm for solving the damped NLH

remains basically the same as tile undamped algorithm of [12]. Each equation (3.2) needs to he suptllemented

by the radiation |mundary conditions at z =- Zmax and two-way ABCs at z = 0.

The radiation boundary conditions are constructed by requiring that on the right boundary z = 2max the

solution of (3.2) be composed of only.... the waves that propagate/de('av 1() the right, i.e. /_,, = ( ql'_ + c2q2.'_

The selection is rendered by the so-called one-way discrete Helmholtz equation [12], which is a a linear

homogeneous relation that defnes the span of all tile appropriate modes. Specifically, let us consider equation

(3.2) on tile grid r_ = 0, 1,... , N - 1, N, and assume that the right-hand side ._,, is small and can therefore

be neglecte(t near the right tloundary n = N, i.e., that the propagatie,n is almost linear in the far field.

Then, we require that tile vector [/_N-a,/_X-2,/_X-1,/_X] T be a linear combination of the two vectors:

[q_"-:',q?"-2,qlx-t qi'f r and _-" N-', q_,_-,, [q2 ', q2 , ,q2_'] 7, which obviously translates into

Rank 1 ql q_ q:l =: 2. (3.13)

1 q2 q_ q_
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Relation (3.13) is, in turn, equivalent to the two scalar equalities

qlq2JEN-'3 - (q| + q'2)EN-2 A- I_TN 1 = O,

qlq2EN-2 -- (ql + q2)EN-I +/_N = 0,

which constitute the one-way-to-the-right discrete Helmholtz equation.

(3.14a)

(3.14b)

Relations (3.14a) and (3.14b)

supt)lement the scheme (3.2) at n = N - 1 and n = N, respectively, i.e., at the two near-edge nodes of

the grid where the regular five-point wide stencil of (3.2) cannot be applied.

The two-way ABC at z = 0 also has to possess the capability of radiation boundary conditions, i.e., it has

guarmltee the transparency of the interface for all the waves that propagate/decay to the left. In other words,

we require that at the left boundary the outgoing, i.e., scattered waves be given by E}scat) = cl q_" + c2q7,".

Assuming for a second the homogeneity: .0,_= 0 near n = 0, we could obtain similarly to (3.13):

I f,(scat) f,(scat) f:,(scat) f_(scal }

--2
Rank 1 q_-l ql ql 3 = 2. (3.15)

1 q_-1 q=72 q2 3

Relation (3.15), again, is equivalent to the one-way-to-the-left discrete Hehnholtz equation:

/_0 (scat) -- (ql + q2)El scat) A- qlq2_7_ seal} --0, (3.16a)

El scat) - (ql + q2)E_ seat) + qlq2/_, scat) = (). (3.16b)

Equations (3.16a), (3.16b), however, cannot be immediately used a.s the ABC at z = 0 because the foregoing

assumt)tion of homogeneity near the. interface is, generally speaking, not correct, and moreover, equations

(3.16a), (3.16b) do not account for the incoming wave at z = 0 (see Section 2.1), i.e., do not have the

important two-way capability. The mmlysis of [12] shows that to accurately address both issues, i.e., the

inhomogeneity that comes from the previous iteration and the presence of the incoming wave, it is suflqcient

to introduce particular modifications to the right-hand side 9n only at two nodes: n = 0 and n = 1. The

corresponding modification due to the incoming signal is obtained by simply substituting the right-traveling

incoming wave /_0(in")q]_ into the one-way-to-the-left Hehnholtz equation (3.16a), (3.16b). Altogether, the

two-way ABCs at z = 0 are given by (eft formulae (3.16a), (3.1617)):

E0 -- (qi + q2)/_1 + qlq2/_2 = g0, (3.17a)

E, - (q, + q2)/_2 -+-qlq2[_a = 9't' (3.17b)

where prime denotes the aforementioned modification of the right-hand side, see [12]. Again, relations (3.17a)

and (3.17b) supplement the scheme (3.2) at the near-edge nodes n = 0 and n = 1, respectively, where the

regular five-point stencil cannot be applied. Straightforward considerations based on the linear superposition

principle and uniqueness (see [12]) guarantee that inhomogeneous relations (3.17a), (3.17b) correctly" specify'

the incoming signal at z = 0 and still ensure the reflectionless propagation of all the outgoing waves through

z =0towardz=-_c.

3.4. Computational Complexity. The computational complexity of one solution of equation (3.1)

is O(N:Nr In N_) operations, where N: and N_ are the corresponding grid dimensions. Indeed, the cost of

solving each of the N_ one-dimensional systems (3.2) is linear with respect to N:, be<:ause each of this systems

needs to be solved repeatedly for multiple right-hand sides. As such, the sparse LU decomposition can be

performed only once ahead of time, and the cost of backward substitution is linear. Therefore, the overall

complexity is dominated by the cost of N: direct and inverse FFTs of length N,,, which is O(.,\'zNr In N_).
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4. Results. In this section we present simulation results fl)r the Gaussian initial conditions Eli,,. =

exp(-r _) and _:)0 = (er_k'_) '/4 exp(-r2/r'_) for the NLH and NLS, respectively. Denoting, as before, the

input power of the incoming wave by N(0), we define the fl'actional inp,,t power as

p = N(0)/N,., (4.1)

i.e., p = 1 when the input power is equal to the NLS critical power N,.. For the Gaussian initial conditions

used in our simulations p = k0_ [12]. In all simulations we sel k_) = 8 and r0 = 1.

Case IN'().

TABLE ,'|. 1

Threshold values of linear damping _.

0.06

0.07

0.072165819

3_/128

0.075

0.08

p = N(O)/N,.

90_:

97.5_:

99%

1000{:

1()0.9_'

104%

116%

(_11
th

9.6. 10 '5

0.00()I

0._)()0_ 1 0.00025

0.00250.1 0.002

8 0.125 130(Z 0.004 0.0062

9 0.15 142_ 0.007 0.(/10

10 0.2 164% 0.014 0.019

11 0.3 202%, 0.03( 0.035

12 0.4 233%, 0.04z 0.050

13 0.5 261%, 0.05_ 0.065

In Table 4.1 we show the calculated threshold values 6tt_,and 6_h" Th(' quantity 5t!l_in Table 4.1 represents

the smallestnon-negative value of ?i for which we obtain a global soluion of the NLH. By this we mean

that the nonlinear iterations converge in the sense that the value of ma x:.,.(E ( '_+ 11 _ EI-1 ) / max-,_ E !" + l)

drops by at least a factor of 10 -6 in the course of iterations on the con4mtational domain 0 < z < 40 and

0 < r < 40, with grid sizes h: = )_/20 and h_ = )_/8, where ,_ = 27r/k0. The particular choice of the domain

size and grid resolution is "inherited" from our previous numerical experiments, see [10,12]. The values of 6_

in Table 4.1 are obtained with at least two significant digits by repeatedly running the code for a given • and

varying 5, which allows one to "close in" on the threshold. As, however, .[iscussed in Section 1, with a larger

computational domain artd/or a finer grid it may be possible to obtain regular solutions for smaller values

of 5, hence, to obtain a lower value of the threshold _I_- For examph _, using the same computational domain

and twice as fine grid: h: = )_/40 and hr ---- )_/16, we could obtain 6_I' = 0.0133 instead of d_, = 0.0145

for the data on row No. 10 of Table 4.1 (e = 0.2). Likewise, using the original grid resolution h: = )_/20

an(t h,. = ,_/8 and the comtmtational domain which was twice as large: Zma_ = 80 and r,,,a_ = 80. we couht

obtain (i_, = 0.0022 instead of ?i_, = 0.0027 for the data on row No. 7 of Fable 4.1 (e = 0.1). In other words,

the values of a_, from Table 4.1 should be considered upper bounds for the actual thresholds. However. the

quantitative limits of pursuing this venue are still unext)lored, i.e., it is n()t known how far down in (f_, one

can go by increasing the domain size and/or grid resolution. Our ability to answer this question is o/)viously

limited by computer resources, and as of yet the question remains open. In particular, it is unclear whether
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we can achieve _, = 0 by choosing a sufficiently large domain and/or fine grid.

Similarly the quantity 6 s, in Table 4.1 represents the smallest non-negative value of damping (_for which

the NLS solution does not blow up. In our NLS simulations we use standard fourth-order finite difference

schemes for the spatial derivatives an<t explicit fourth-order Runge-Kutta for marching in z. As has recently

been shown in [9], in finite-difference simulations of NLS solutions that are known analytically to become

singular, the c<)mpute<t solution still remains boun(led. Therefore, there is always an element of arbitrariness

in selecting a numerical criterion for blowup in NLS simulations. In our NLH simulations the largest relative

increase in amplitude due to self-focusing has never exceeded a factor of two. In order to make the blowup

criteria in NLH and NLS simulations as close to one another as possible, we define the computed NLS

solution as becoming singular once its amplitude increases by a factor of two. We checked that altering this

NLS bh)wup criteri<m leads to only minor changes in the results for 6_,. For example using the blowup

criterioil of relative focusing by a factor of 4, rather than 2, for e = 0.08 (row No. 6 of Table 4.1) gives

5_h = 0.00021 instead of 5_h = 0.00025; and using this new criterion for e = 0.15 (row No. 9 of Table 4.1)

yields 5sh = 0.0089 instead of 5_ = 0.010. In t)artieular, this change does not affect our main finding of

initial conditions for which 5tHh< 5tSh.

As expected, for both the NLS and the NLH the threshold values of 6 increase with e (i.e., a larger

alnount of damping is needed to arrest collapse of beams with higher input power). For • = 0.06 and

e = 0.07 the input power is below critical. Therefore, both the NLS and the NLH have global solutions

for 5 = 0. This behavior for the NLH holds (at least) till e = 0.072165819, which corresponds to the last

subcritical value 5 that we have checked: N(0) being equal to 99_ of _c.

Starting from e = 37c/2k'_ _ 0.073631077, which corresponds exactly to N(0) = N(., the NLH requires a

certain positive amount of damping 5 to maintain the regularity of the solution. For the NLS, the solution

with no damI)ing remains regular till • = 0.75, which (:orresponds to p = N(O)/N(. = 1.009. Indeed, it is

known that :\'(. is only a lower bound for the threshold power for NLS collapse, arid that any initial condition

which does blow up, and whose amplitude lW0t is not equal to the ground state profile 31/4_, has

power strictly above N,. [7, 16, 17]. In our simulations we have discovered that for • = 37r/2kg, which is the

critical value for the NLH, as well as for the moderately supercritical values e = 0.075, e = 0.08 and • = 0.1,

when the input t)ower N(0) is only slightly above N,., the threshold damping for the NLH is larger 6 than that

for the NLS: 6H_ > 5_h. However, for input powers that are equal or higher than 1.30N(. (which corresponds

to e = 0.125) this trend reverses, see Table 4.1, and we obtain 5H, < 5Sh . Thus for N(0) > 1.30No, 7 there

must be other mechanisms in the NLH riot present in the NLS that help suppress the formation of singularity

in the solution. Therefore, we may conclude that in this regime nonpazuxiality and backscattering help arrest

collapse of nonlinear waves.

In [6] Fibich has used asymptotic analysis to show that

(f_h "-- c(p - 1) 3/2, (4.2)

where p is the fractional critical power (4.1). In Figure 4.1 we put this theoretical prediction to a test by

plotting the values of 5_h and gH as a function of (p -- 1). When we computed the best fit of the values of

3Sh with the two-parameter family of curves 6th = c(p -- 1) _, we obtained cr = 1.517, which is in excellent

'SAs mentioned in Section l, for larger subcritical values of N(0) the convergence of nonlinear iterations becomes prohibitively

slow.

6We remind that the values of 61_ in Table 4.1 are only upper bounds for the threshold; lower values may be obtained by

refining the grid and/or enlarging the computational domain.

7More precisely, N(0) higher than some value between 1.16No and 1.30Nc
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agreement with formula (4.2). Relation (4.2) also provides a good apt,roximation to tim da_a points 5_I,,

see Figure 4.1. Ttle only exception is the lowest-power NLH data point in- Figure 4.1 thai corresponds to

• = 0.08 (row No. 6 in Table 4.1), for which the value of d_l, has most likely been overpredictcd mimeTically

because of the computational constraints discussed previously.

_th
10 -2

10 -3

0 `-4 I , , , I , , , , , , , I , , ,

0.04 0.2 1

p-1

tq(;. 4.1. Threshold values fi_l_ (hollow bullets %") and a_h (asterisks "* ") as a fraction oI (p- l) for the data in Table _. I.

7"he solid line 0.035(p- 1) 1517 is the best fit to the values of _h"

In Figure 4.2 we plot the on-axis (r = O) amplitudes of the NLH and NLS solutions for ( = 0.2 and

various values of 6. The on-axis behavior is most representative of the ph3 sical processes that we are studying,

because for symmetric beams this is the location of the peak intensity. When ($ = 5_, = 0.0145, the NLH

solutioil exists globally but the NLS solution becomes singular at a finit( propagation distance. As the value

of damping increases, both the NLS and the NLH solutions undergo less focusing. For all the cases for

which both solutions remain regular, the NLS solution curve is higher :han the NLH one from z = 0 until

its maximum, i.e., the point of the arrest of collapse. This provides additional support to the foregoing

conclusion that nonparaxiality and backscattering arrest collapse of n(,nlinear waves. Note that after the

collapse has been arrested, the NLS solution becomes lower than the NLS one. ()ilC possible explanation for

this is that the NLS solution is undergoing higher focusing, hence it loses more power due to damping.

We emphasize that at z = 0 the NLH solution is not equal To EII,¢., see Figure 4.2. The difference

between the two is due to backscattering, and can be used to quanti(v the level of backscattering for a

particular setting, see [10, 12]. s In Table 4.2 we provide the vahms of maximum self-focusing and maxinmm

t,ackscattering in tile NLH, defined as max,,: tE(z, r)] and max_ IE(0, r) - E°,_(r)], respectively, for various

values of • and 5. The clash .... in a particular cell of Table 4.2 nwans that the level of damping was

_There are, in fact, two phenomena that aceoum for the discrepancy between thv NLH and NI.S curves: Nonparaxiality of

1he forward propagating wave and backscattering. Because the problem is nonlinear, these two mechanisms cannot be easily

and explicitly told apart inside the domain. The only location where we can clearly say that the difference is purely due to

backscauering is the "inflow" interface z = 0, see [10].
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insufficient to guarantee tile convergence of the numerical algorithm. As expected, for a given level of

damping 5, the NLH solution undergoes stronger self-focusing as the nonlinearity coefficient e increases. The

level of backscattering also increases with tile increase of e. As also expected, for a given input power e,

when the damping (f increases the NLH solution undergoes weaker self-focusing (see Figure 4.2). Surprisingly,

however, changing the value of damping _ has very little or no effect on the level of baekscattering. To further

corroborate this observation, we picked a particular value of the nonlinearity coefficient, e = 0.2, and ran an

additional series of numerical tests with a substantially more fine sampling for (f. These results, which are

presented in Table 4.3, confirm that backscattering is not affected by linear damping. This phenomenon

certainly cannot be explained by saying that linear damping has the overall negligible effect, since its effect

TABLE 4,2

Maximum absolute levels of self-focusing and backseattering in the NLH for a variety of _ and g.

Maximum self-focusing Maxinmm backscattering

6 = 0.0145 _ = 0.0175 (f = 0.0210 _ = 0.0145 5 = 0.0175 _i = 0.0210

e = 0.15 1.1179 1.0601 1.0162 0.0372 0.0373 0.0373

e = 0.175 1.2718 1.1538 1.0761 0.0420 0.0421 0,0421

e = 0.2 1.5515 1.3158 1.1716 0.0465 0.0466 I 0.0466

e = 0.225 1,3242 ] 0.0509
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oll the focusing dynanfics can be clearly seen through the changing values of the maximum focusing both in

Table 4.2 and in Figure 4.2. At present, we have no good explanation t(, this surprising observation.

TAI_LE .1.3

Maximum absolute levels of self-focusin 9 and backscatteriT_q in _he NLtl for f = 0.2.

Case No. Damping _ Max. self-flmusing Max. backscattering

1 0.0145 1.5515 0.0465

2 0.0147 1.5296 0.0465

3 0.0150 1.4992 0.0465

4 0.0155 1.4538 0.0465

5 0.0160 1.4135 0.0466

6 0.0165 1.3776 0.0466

7 0.0170 1.3451 0.0466

8 0.0175 1.3158 0.0466

9 0.0180 1.2892 0.0466

10 0.0190 1.2428 0.0466

11 0.0200 1.2041 0.0466

12 0.0210 1.1716 0.0466

5. Concluding Remarks. The question whether nonparaxialily and backscattering may arrest

collapse of nonlinear waves has been open for many years. While the answer to this question is probably

positive, no conclusive argument toward it, whether analytical or numerical, has been previously available in

the literature. In this study we addressed this question within the framework of the linearly damped NLH

and NLS. As has been mentioned, the addition of linear damI)ing is not M-hoe because it has both physical

and mathematical motivation. Methodologically, linear damping provi(ies a very useful "extra dimension"

that allowed us to efficiently control the solutions of the NLH and NLS. Specifically, the variation along this

extra dimension has helped us to numerically identify the regimes, for which the NLS solution blows up,

while the NLH solution remains regular. In other words, our results furnish the first ever definite numerical

evidence that nonparaxiality and backscattering can arrest collapse. Th( question whether regular solutions

to the NLH still exist in the absence of damping remains open as of yet. However, we hope that the arguments

based on linear damping and the limiting absorption principle may be useflfl for t)roving global existence

and uniqueness, both for the damped NLH and for the undamped NLH
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